国产精品96久久久久久_精品人妻一区_91麻豆产精品久久久久久夏晴子_色偷偷91综合久久噜噜人妻_亚洲欧美人成视频在线观看_成人免费一区二区三区视频_国产精品人妻一区二区三区_国产精品伊人久久久久_国产一区二区三区免费播放_精品国产三级A∨在线_国产乱子乱人伦电影在线观看_午夜精品视频在线观看_夜夜夜综合网_中文字幕亚洲乱码熟女_亚洲AV片不卡无码天堂

技術(shù)文章您現(xiàn)在的位置:首頁(yè) > 技術(shù)文章 > ClickChemistryTools基于點(diǎn)擊化學(xué)的糖譜學(xué)研究解決方案

ClickChemistryTools基于點(diǎn)擊化學(xué)的糖譜學(xué)研究解決方案

更新時(shí)間:2021-06-24   點(diǎn)擊次數(shù):2314次

Click-&-Go IsoTAG Kit for Profiling Intact Glycopeptides

 

While there has been much interest in profiling the intact glycoproteome, the complexity of glycoproteoforms (and more broadly, all proteoforms) remains challenging to completely define. Mass spectrometry (MS) is commonly employed for characterization of complex proteomic samples. A popular strategy for protein identification is the bottom-up shotgun proteomics approach. In this method, a mixture of proteins is subjected to proteolytic digestion, the resulting peptides are separated by LC and detected by MS, and their parent proteins are inferred from the assigned peptide sequences.

 

To convert MS data acquired from proteolytic digests into protein identifications, tandem MS can be used to obtain sequence information for individual peptides, followed by comparing an in-silico proteolytic digest of an organism’s proteome. Typically, only the most abundant peptides are selected for fragmentation (Figure 2), whereas data for those peptides in relatively low quantities are not obtained. An inherent problem in shotgun proteomics is identifying proteins of low abundance, such as biomarkers for disease states, against a background of proteins whose concentrations can span up to 12 orders of magnitude.

Figure 1. Metabolic labeling with a chemically functionalized glycan, chemical taggingand enrichment using an isotopic recoding affinity probe

 

 

To address the unique challenges of the global characterization of the intact glycoproteome, a mass-independent chemical glycoproteomics platform, termed isotope targeted glycoproteomics (IsoTag) was developed by the Carolyn Bertozzi group. The platform is comprised of four central components: (i) metabolic labeling with a chemically functionalized glycan, (ii) chemical tagging and enrichment using an isotopic recoding affinity probe, (iii) directed tandem MS, and (iv) targeted glycopeptide assignment (Figure 2).

 

                                                          

Figure 2. Traditional proteomics and Iso-Tag-directed proteomics workflow

 

IsoTaG is performed by isotopic recoding and enrichment of metabolically labeled glycoproteins followed by directed tandem MS (MS2 or MSn) analysis and intact glycopeptide assignment. Isotopic recoding is accomplished by metabolic labeling of cell or tissue samples with azide- or alkyne-functionalized sugars, followed by chemical conjugation with a biotin probe bearing a unique isotopic signature.

 

Some examples of sugar labels are peracetylated N-azidoacetylmannosamine (Ac4ManNAz), which is converted to the corresponding azidosialic acid (SiaNAz), and peracetylated N-azidoacetylgalactosamine (Ac4GalNAz), which is metabolized to label glycans possessing N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine (GalNAc) (not provided with kit).

 

In order to perform isotopic tagging, the kit provides two cleavable IsoTaG probes encoded by zero [M] and two [M + 2] deuterium atoms. Probes with different encoding can be provided by Click Chemistry Tools though custom synthesis. The IsoTaG probe with zero, and that with two deuterium atoms [M, M + 2] can be used in different proportions; 1:1, 1:2, 1:3 and 1:4. Pattern recognition with isotopic ratio of 1:3 showed the highest fidelity.

                   Figure 3. Cleavable IsoTaG probe encoded by zero deuterium atoms [M] (R = H) and two deuterium atoms [M+2] (R = D)

 

Through these probes, a unique isotopic signature is embedded exclusively into the glycopeptides. The isotopic signature serves as a computationally recognizable full-scan MS reporter. A computational algorithm, termed isotopic signature transfer and mass pattern prediction (IsoStamp), for the detection of recorded species in full-scan mass spectra, was also developed by the Carolyn Bertozzi group. IsoStamp compares observed and predicted isotopic envelopes to identify chemically tagged species in full-scan mass spectra.

 

IsoTag has the potential to enhance any proteomics platform that employs chemical labeling for targeted protein identification, including isotope-coded affinity tagging, isobaric tagging for relative and absolute quantitation, and chemical tagging strategies for post-translational modification.


Description                                          Product #       Pkg. Size       Price(¥)


 

Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *azide modified proteins*      1448       1 kit            8900.0   

Click-&-Go™ IsoTag Kit for Intact Glycopeptides Profiling *alkyne modified proteins*     1449       1 kit            8900.0

DADPS H2/D2 Biotin Azide, 2 mg each                                     1450          1 set           6580.0    

DADPS H2/D2 Biotin Alkyne, 2 mg each                                     1451         1 set           6580.0



Selected References:

1. Woo, C. M., et al. (2017). Development of IsoTaG, a Chemical Glycoproteomics Technique for Profiling Intact N- and O?Glycopeptides from Whole Cell Proteomess. J. Proteome Res., 16: 1706−18.

2. Woo, C.M.., et al. (2017). Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Mol. Cell.Proteomics., 17: 764−75.

3. Gao, G., et al. (2017). Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. J. Am. Chem. Soc., 140: 4259−68.

4. Woo, C.M., et al. (2015). Isotope-targeted glycoproteomics (IsoTaG): a mass-independent platform for intact N- and O-glycopeptide discovery and analysis. Nat Methods., 12: 561−7.

5. Weerapana, E., et al. (2010). Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature, 648: 790−5.

Iso-Tag products are covered by U.S. Patent No.: 10,114,026.


This product may be used for research purposes only. It is not licensed for resale and may only be used by the buyer. This product may not be used and is not licensed for clinical assays, where the results of such assays are provided as a diagnostic service. If a diagnostic or therapeutic use is anticipated, then a license must be requested from the University of California. The availability of such diagnostic and therapeutic use license(s) cannot be guaranteed from the University of California.

靶點(diǎn)科技(北京)有限公司

靶點(diǎn)科技(北京)有限公司

地址:中關(guān)村生命科學(xué)園北清創(chuàng)意園2-4樓2層

© 2025 版權(quán)所有:靶點(diǎn)科技(北京)有限公司  備案號(hào):京ICP備18027329號(hào)-2  總訪問(wèn)量:351464  站點(diǎn)地圖  技術(shù)支持:化工儀器網(wǎng)  管理登陸

久久熟女| 国产无遮挡又黄又爽又色| 亚洲一级毛片| 人人射人人操| 精品人妻少妇一级毛片免费| 国产精自产拍久久久久久蜜| 欧美偷拍视频| 伊人91| 国产a区| 亚洲精品无码久久久| 国产三级片在线免费观看| 亚洲一级毛片| 狠狠操影院| 日韩欧美亚洲| 久久99精品久久久久久水蜜桃| 天天做天天干| 国产高清自拍| 人妻无码中文久久久久专区| 精品欧美一区二区精品久久| 91在线网址| 国产真实乱伦| 婷婷中文字幕| 亚洲有码在线观看| 国产免费高清视频| 日操夜操| 国产第二页| 免费一区二区| 无码天堂| 国产一区二区三区在线视频| 精品视频99| 中文字幕在线免费视频| 91精品久久久久久久久久| 三级性爱视频| 中文字幕在线免费视频| 无码人妻少妇色欲AV一区二区| 精品无码在线观看| 97色综合| 91精品91久久久中77777| 亚洲电影在线| 熟女久久| 一级片在线观看|